If it's not what You are looking for type in the equation solver your own equation and let us solve it.
5x^2-42x-49=0
a = 5; b = -42; c = -49;
Δ = b2-4ac
Δ = -422-4·5·(-49)
Δ = 2744
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{2744}=\sqrt{196*14}=\sqrt{196}*\sqrt{14}=14\sqrt{14}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-42)-14\sqrt{14}}{2*5}=\frac{42-14\sqrt{14}}{10} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-42)+14\sqrt{14}}{2*5}=\frac{42+14\sqrt{14}}{10} $
| 5/a+4-2/a-2=0 | | 7x+17x-8=6(4x+2) | | 31-6x=20+5x | | x=(x+6)+114 | | 3x+32=77 | | 1/8y+2=-2 | | 14=t48 | | f(f−9)=0 | | x=(4x+6)+102 | | I=100x(0.13x2) | | 6x-3x+(-24)=9 | | 10x+15=270x+10 | | (3x+30)=-180 | | -3x(4x+9)=15 | | 180-(3x+30)+(2x+40)=90 | | 180-(3x+30)+(2x-40)=90 | | 5(1-2x×-6)=-65 | | 2x+1.25=5.50x+0.75 | | 14-2y=36 | | 2x+3x-6=18 | | 2x-17+98=180 | | (1x)x5=10 | | 2x^2+7x-10=3x-1 | | d=(2-2)^2+(1+5)^2 | | 0.7x=(62*5) | | 0.7x=(62x5) | | a+a+5=13 | | 3x7+2x=9x-1 | | |9+6x|=-4 | | 1/10x-2=3 | | 19=-6x-4 | | Y=25x-5 |